分类: 法→原理

Learning to Rank算法学习之GBRank

GBRank是一种pair-wise的学习排序算法,他是基于回归来解决pair对的先后排序问题。在GBRank中,使用的回归算法是梯度提升数GBT(Gradient Boosting Tree) 算法原理 Learning To Rank需要解决的问题是给定一个Query…

推荐系统:从千人千面到千域千面

谈到推荐系统,很多人的印象中是“个人性推荐”和“千人千面”。关于“千域千面”应该很少人提及,主要能用到的场景不多,先前有想过在酒店场景上应用,但是由于各种原因最终没有尝试。以下是高德地图在“千域千面”的一些…

主题模型LDA(Latent Dirichlet Allocation)初探

在潜在语义分析LSA的文章中对LDA有一些简单的介绍,今天的目标是对LDA进行相对深入的了解,大致搞明白其原理。 LDA简介 在机器学习领域中有2个 LDA: 线性判别分析 (Linear Discriminant Analysis),主要用…

排序优化算法Learning to Ranking

Learning to Ranking简介 Learning to Rank (LTR)是指一系列基于机器学习的排序算法,最初主要应用于信息检索(Information Retrieval,IR)领域,最典型的是解决搜索引擎对搜索结果的排序问题。除了信息检索以…

潜在语义分析LSA初探

什么是潜在语义分析LSA? 潜在语义分析(Latent Semantic Analysis),是语义学的一个新的分支。传统的语义学通常研究字、词的含义以及词与词之间的关系,如同义,近义,反义等等。潜在语义分析探讨的是隐藏在字词…

信息的度量:信息熵的理解与应用

什么是信息熵? 信息是我们一直在谈论的东西,但信息这个概念本身依然比较抽象。在百度百科中的定义:信息,泛指人类社会传播的一切内容,指音讯、消息、通信系统传输和处理的对象。但信息可不可以被量化,怎样量…

机器学习, 法→原理 ·

风险控制:信用评分卡模型

什么是信用评分卡模型? 评分卡模型又叫做信用评分卡模型,最早由美国信用评分巨头FICO公司于20世纪60年代推出,在信用风险评估以及金融风险控制领域中广泛使用。银行利用评分卡模型对客户的信用历史数据的多个特…

条件随机场CRF及CRF++安装与使用

条件随机场(conditional random field, CRF)是用来标注和划分序列结构数据的概率化结构模型。言下之意,就是对于给定的输出,标识序列Y和观测序列X,条件随机场通过定义条件概率P(Y|X),而不是联合概率分布P(X, Y)…

最小熵原理确认词向量维度

随着 NLP 的发展,像 Word2Vec、Glove 这样的词向量模型,正逐渐地被基于 Transformer 的 BERT 等模型代替,不过经典始终是经典,词向量模型依然在不少场景发光发热,并且仍有不少值得我们去研究的地方。本文来关心…

PageRank算法原理与实现

什么是PageRank PageRank,简称PR,是Google排名运算法则(排名公式)的一部分,是Google用于用来标识网页的等级/重要性的一种方法,是Google用来衡量一个网站的好坏的重要标准之一。PageRank计算页面的重要性,对…

法→原理, 算法实现 ·