Transformer 简介 Transformer是一种深度学习架构,由Google的研究者在2017年的论文《Attention Is All You Need》中首次提出。它在自然语言处理(NLP)和其他领域取得了巨大的成功,特别是在处理长序列数据方面。…
线性回归是机器学习中最为简单的模型,但在实际使用过程中可能不太适用。比如以下场景: 分段线性拟合是一种用于对数据进行建模的回归方法,其中数据在不同的区间内使用不同的线性函数进行建模。与简单线性…
NeuralProphet产生背景 大多数时间序列问题需要易于理解的预测。同时,需要有效的预测。这两个愿望导致了一种权衡:可解释性与准确率。准确率的显著提高通常归因于更复杂的模型。然而,复杂性与可解释性存在天然的…
超参数优化简介 目前人工智能和深度学习越趋普及,大家可以使用开源的Scikit-Learn、TensorFlow来实现机器学习模型。对于各种模型而言,或多或少都具有要调节的超参数。相同的模型应用在不同的数据集上,如何选择…
DTW简介 DTW(Dynamic Time Warping)是一种用于比较时间序列之间相似性的算法。它可以有效地处理在时间轴上存在偏移、缩放和扭曲等变形的时间序列数据。DTW算法通过对两个时间序列进行动态规整,将它们按最优路径…
针对Facebook Prophet的使用,很多年以前就整理过一篇文章《Facebook时间序列预测工具fbprophet》,过了N年以后当重新需要使用这个工具的时候,发现部分内容已经更新,中间的很多细节内容都没有表述清楚。实际使用…
在上一篇重新认识Excel的文章中,提到了Excel无所不能,然后就想到了曾经看到的这篇关于如何使用Excel搭建推荐引擎的文章。于是找了出来做了下简单的翻译(只翻译了重点部分)。 在互联网上有无限的货架空间,找…
先前对于生存分析的理解比较片面,虽然知道生存分析不仅仅适用于预料行业,对于用户留存的也有一定的范围,当时的理解是只适合订阅制的网站用来分析用户留存,但是仔细分析后发现适用场景还是蛮多的。其中个人觉得…
Fuzzy C-Means简介 模糊理论 模糊控制是自动化控制领域的一项经典方法。其原理则是模糊数学、模糊逻辑。1965,L. A. Zadeh发表模糊集合“Fuzzy Sets”的论文, 首次引入隶属度函数的概念,打破了经典数学“非0即 1”…
对于深度学习或机器学习模型而言,我们不仅要求它对训练数据集有很好的拟合(训练误差),同时也希望它可以对未知数据集(测试集)有很好的拟合结果(泛化能力),所产生的测试误差被称为泛化误差。度量泛化能力的…