标签:算法

PageRank算法原理与实现

什么是PageRank PageRank,简称PR,是Google排名运算法则(排名公式)的一部分,是Google用于用来标识网页的等级/重要性的一种方法,是Google用来衡量一个网站的好坏的重要标准之一。PageRank计算页面的重要性,对…

法→原理, 算法实现 ·

算法的时间复杂度和空间复杂度

算法复杂度是算法性能最基本的评价标准。算法复杂度由时间复杂度和空间复杂度组成,属于计算复杂性理论中的内容。 时间复杂度 时间复杂度描述了算法的运行时间, 算法的时间复杂度是一个函数,它定量描述了该算法…

法→原理, 算法实现 ·

经典算法之分治法

分治法概念 分治法(divide-and-conquer)字面上的解释是“分而治之”,就是把一个复杂的问题分成两个或更多的相同或相似的子问题,直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。分治有两个特…

法→原理, 算法实现 ·

经典算法之动态规划法

动态规划是一种将原问题拆解为若干子问题的求解方法,常常用于重叠子问题的和最有结构性能的问题。通过动态规划的方法,计算量则圆圆小于一般的解法。原因在于,对于重叠子问题,一般情况下会被重复计算,而动态规…

法→原理, 算法实现 ·

分层时间记忆算法HTM

分层时间记忆算法(Hierarchical Temporal Memory),全称HTM Cortical Learning Algorithms是由Numenta公司发表的新一代人工智能算法。HTM算法旨在模拟新大脑皮层的工作原理,将复杂的问题转化为模式匹配与预测。正…

频繁项集算法Eclat

Equivalence Class Transformation(Eclat)是频繁项挖掘和关联性分析的另外一种常用的算法,与Apriori和FP-growth不同的是,Eclat采用垂直数据格式。所谓的垂直数据格式,就是从对原有数据进行倒排。 Apriori算法…

数据, 术→技巧 ·

机器学习算法之CatBoost

CatBoost是俄罗斯的搜索巨头Yandex在2017年开源的机器学习库,是Gradient Boosting(梯度提升) + Categorical Features(类别型特征),也是基于梯度提升决策树的机器学习框架。 CatBoost简介 CatBoost这个名字…

机器学习算法之LightGBM

上一篇文章介绍了一个梯度提升决策树模型XGBoost,这篇文章我们继续学习一下GBDT模型的另一个进化版本:LightGBM。LigthGBM是boosting集合模型中的新进成员,由微软提供,它和XGBoost一样是对GBDT的高效实现,原理…

机器学习算法之XGBoost

在上一篇Boosting方法的介绍中,对XGBoost有过简单的介绍。为了更还的掌握XGBoost这个工具。我们再来对它进行更加深入细致的学习。 什么是XGBoost? 全称:eXtreme Gradient Boosting 作者:陈天奇(华盛顿…

机器学习算法之K-近邻(KNN)

什么是K-近邻算法? K近邻法(k-nearest neighbor, k-NN)是1967年由Cover T和Hart P提出的一种基本分类与回归方法。它的工作原理是:存在一个样本数据集合,也称作为训练样本集,并且样本集中每个数据都存在标签,…