在建立回归模型时需要对模型的效果进行评测,选择哪一种指标作为评估指标也会影响最终模型的效果。这里选择ScikitLearn自带的回归模型评估指标进行详细讲解。 explained_variance_score(y_true, y_pred) Explaine…
识别验证码的方式很多,如 tesseract、SVM 等。今天主要学习的是如何使用 KNN 进行验证码的识别。 数据准备 本次实验采用的是 CSDN 的验证码做演练,相关的接口:https://download.csdn.net/index.php/rest/tools/v…
Confusion Matrix混淆矩阵 在机器学习领域,混淆矩阵(confusion matrix),又称为可能性表格或是错误矩阵。它是一种特定的矩阵用来呈现算法性能的可视化效果,通常是监督学习(非监督学习,通常用匹配矩阵:matchi…
什么是K-近邻算法? K近邻法(k-nearest neighbor, k-NN)是1967年由Cover T和Hart P提出的一种基本分类与回归方法。它的工作原理是:存在一个样本数据集合,也称作为训练样本集,并且样本集中每个数据都存在标签,即…
上一篇Folium 的文章中,针对 Choropleth 的使用有过简单的介绍,但是对于如何调整分级样式图等,没有进一步的阐述。这篇文章结果自己的使用经验做些简单的总结。 生成 Choropleth 分级着色图的方法目前主要有两种…
先前的文章中介绍了基于密度的聚类方法DBSCAN,今天要学习的是 HDBSCAN。单从名字上看,两者必然存在一定的关系。我们先来看看官方的介绍: HDBSCAN - Hierarchical Density-Based Spatial Clustering of Applicati…
在前面介绍的DBSCAN算法中,有两个初始参数Eps(邻域半径)和minPts(Eps邻域最小点数)需要手动设置,并且聚类的结果对这两个参数的取值非常敏感,不同的取值将产生不同的聚类结果。为了克服DBSCAN算法这一缺点,提…
K-Means算法和MeanShift算法都是基于距离的聚类算法,基于距离的聚类算法的聚类结果是球状的簇,当数据集中的聚类结果是非球状结构时,基于距离的聚类算法的聚类效果并不好。 与基于距离的聚类算法不同的是,基…
大部分聚类方法针对的是多维数据,现实场景中还有可能存在以为数据的情况,针对以为数组的聚类和多维的数据有很大的不同,今天就来实战演练下: 需求内容:分析订单的价格分布 常见方案:按照100为梯度,分析不…
在学习聚类算法得时候并没有涉及到评估指标,主要原因是聚类算法属于非监督学习,并不像分类算法那样可以使用训练集或测试集中得数据计算准确率、召回率等。那么如何评估聚类算法得好坏呢?好的聚类算法,一般要求类…