标签:机器学习

机器学习/数据分析之缺失值处理

在机器学习数据预处理阶段经常需要对数据进行缺失值处理。关于缺失值的处理并没有想象中的那么简单。以下为一些经验分享。 数据缺失类型 完全随机丢失(MCAR,Missing Completely at Random):某个变量是否…

数据, 术→技巧 ·

机器学习之特征选择方法

特征选择是特征工程里的一个重要问题,其目标是寻找最优特征子集。特征选择能剔除不相关(irrelevant)或冗余(redundant)的特征,从而达到减少特征个数,提高模型精确度,减少运行时间的目的。另一方面,选取出真正相…

数据, 术→技巧 ·

特征工程数据预处理之抽样

在分析数据或进行算法模型训练前有时需要先对数据进行抽样,这里整理了抽样的一些知识点。 什么情况下需要会用到抽样? 数据量太大,计算能力不足。 抽样调查,小部分数据即可反应全局情况。 时效…

数据, 术→技巧 ·

PMML,JAVA调用Python算法模型

公司大部分应用的使用的是JAVA开发,要想使用Python模型非常困难,网上搜索了下,可以先将生成的模型转换为PMML文件后即可在JAVA中直接调用。 PMML简介 模型预测标记语言(Predictive Model Markup Language)是…

数据, 术→技巧, 研发 ·

自然语言处理工具包之NLTK

NLTK简介 NLTK(Natural Language Toolkit)是由宾夕法尼亚大学计算机和信息科学使用python语言实现的一种自然语言工具包,其收集的大量公开数据集、模型上提供了全面、易用的接口,涵盖了分词、词性标注(Part-Of-Sp…

器→工具, 工具软件 ·

推荐算法之矩阵分解

矩阵分解简介 推荐领域的人一般都会听说过十年前 Netflix Prize 的比赛,随着Netflix Prize推荐比赛的成功举办,近年来隐语义模型(Latent Factor MOdel,LFM)受到越来越多的关注。隐语义模型最早在文本挖掘领域…

深度学习之BP神经网络

神经网络简介 神经网络的结构模仿生物神经网络,生物神经网络中的每个神经元与其他神经元相连,当它“兴奋”时,向下一级相连的神经元发送化学物质,改变这些神经元的电位;如果某神经元的电位超过一个阈值,则被激…

法→原理, 深度学习 ·

深度学习之长短期记忆网络LSTM

普通RNN存在的问题 循环神经网络(Recurrent Neural Network,RNN)是一种用于处理序列数据的神经网络。相比一般的神经网络来说,他能够处理序列变化的数据。比如某个单词的意思会因为上文提到的内容不同而有不同…

Word2Vec自然语言情感分析实战

情感分析是一种常见的自然语言处理(NLP)方法的应用,特别是在以提取文本的情感内容为目标的分类方法中。通过这种方式,情感分析可以被视为利用一些情感得分指标来量化定性数据的方法。尽管情绪在很大程度上是主观…

数据, 术→技巧 ·

卷积神经网络TextCNN与情感分析

在“卷积神经网络”中我们探究了如何使用二维卷积神经网络来处理二维图像数据。在之前的语言模型和文本分类任务中,我们将文本数据看作是只有一个维度的时间序列,并很自然地使用循环神经网络来表征这样的数据。其实…