多经纬度坐标的中心点计算方法

在实际的应用场景,通常会遇到计算多个经纬度中心的需求。而在计算经纬度中心点通常有三种方式,每种方式对应不同的需求。

地理中心点

地理中心点的求解过程非常的简单,即将每个经纬度转化成x,y,z的坐标值。然后根据根据x,y,z的值,寻找3D坐标系中的中心点。

具体代码为:

平均经纬度

所谓的平均经纬度是将经纬度坐标看成是平面坐标,直接计算经度和纬度的平均值。注意:该方法只是大致的估算方法,仅适合距离在400KM以内的点。

最小距离点

所谓的最小距离点,表示的是如何给出的点中哪一点到各个点的距离最近,常用于路径相关的场景。比较简单的实现方式是使用K-Means,并将K值设为1。注意,Scikit Learn中自带的Kmeans默认是欧式距离,不支持自定义。解决方法是自己实现:

参考链接:

微信支付标点符 wechat qrcode
支付宝标点符 alipay qrcode

使用Python绘制柱形竞赛图

我们经常看到的Bar Chart Race(柱形竞赛图),可以看到数据的呈现非常的直观。今天就一起来学习下如何

时间序列趋势判断

判断时间序列数据是上升还是下降是我们常见的问题。比如某个股票在过去一年整体趋势是上升还是下降。我们可以通过画图

聚类算法之Affinity Propagation(AP)

Affinity Propagation算法简介 AP(Affinity Propagation)通常被翻译为

发表评论

电子邮件地址不会被公开。 必填项已用*标注