标签: word2vec

词向量实战:Word2Vec、FastText、Glove

之前的文章详细介绍Google的词向量工具Word2Vec、Facebook的词向量工具FastText、斯坦福大学词向量工具Glove。之前的文章主要从原理层面进行了介绍。今天想要分享的只要内容是如何使用这些工具。及比较针对相同的训…

Facebook词向量工具FastText

FastText简介 fastText是Facebook于2016年开源的一个词向量计算和文本分类工具,在文本分类任务中,fastText(浅层网络)往往能取得和深度网络相媲美的精度,却在训练时间上比深度网络快许多数量级。在标准的多核C…

Word2vec实战:中文维基百科语料训练

Word2vec是Google于2013年开源推出的一个用于获取词向量的工具包,关于它的介绍可以看先前整理的Word2Vec原理。 获取和处理中文语料 维基百科的中文语料库质量高、领域广泛而且开放,非常适合作为语料用来训练。…

数据, 术→技巧 ·

斯坦福大学的词向量工具:GloVe

GloVe简介 GloVe的全称叫Global Vectors for Word Representation,它是一个基于全局词频统计(count-based & overall statistics)的词表征(word representation)工具。 Glove与LSA的区别 LSA(Laten…

Google词向量工具Word2Vec

word2vec是Google在2013年推出的一个NLP工具,它的特点是将所有的词向量化,这样词与词之间就可以定量的去度量他们之间的关系,挖掘词之间的联系。word2vec工具主要包含两个模型:跳字模型(skip-gram)和连续词袋…