Python字符串模糊匹配库FuzzyWuzzy

33 sec read

在计算机科学中,字符串模糊匹配(fuzzy string matching)是一种近似地(而不是精确地)查找与模式匹配的字符串的技术。换句话说,字符串模糊匹配是一种搜索,即使用户拼错单词或只输入部分单词进行搜索,也能够找到匹配项。因此,它也被称为字符串近似匹配。

字符串模糊搜索可用于各种应用程序,例如:

  • 拼写检查和拼写错误纠正程序。例如,用户在Google中键入“Missisaga”,将返回文字为“Showing results for mississauga”的点击列表。也就是说,即使用户输入缺少字符、有多余的字符或者有其他类型的拼写错误,搜索查询也会返回结果。
  • 重复记录检查。例如,由于名称拼写不同(例如Abigail Martin和Abigail Martinez)在数据库中被多次列出。

这篇文章将解释字符串模糊匹配及其用例,并使用Python中Fuzzywuzzy库给出示例。

使用FuzzyWuzzy合并酒店房型

每个酒店都有自己的命名方法来命名它的房间,在线旅行社(OTA)也是如此。例如,同一家酒店的一间客房Expedia将之称为“Studio, 1 King Bed with Sofa Bed, Corner”,Booking.com(缤客)则简单地将其显示为“Corner King Studio”。不能说有谁错了,但是当我们想要比较OTA之间的房价时,或者一个OTA希望确保另一个OTA遵循费率平价协议时(rate parity agreement),这可能会导致混乱。换句话说,为了能够比较价格,我们必须确保我们进行比较的东西是同一类型的。对于价格比较网站和应用程序来说,最令人头条的问题之一就是试图弄清楚两个项目(比如酒店房间)是否是同一事物。

Fuzzywuzzy是一个Python库,使用编辑距离(Levenshtein Distance)来计算序列之间的差异。为了演示,我创建了自己的数据集,也就是说,对于同一酒店物业,我从Expedia拿一个房间类型,比如说“Suite, 1 King Bed (Parlor)”,然后我将它与Booking.com中的同类型房间匹配,即“King Parlor Suite”。只要有一点经验,大多数人都会知道他们是一样的。按照这种方法,我创建了一个包含100多对房间类型的小数据集,可以访问Github下载

我们使用这个数据集测试Fuzzywuzzy的做法。换句话说,我们使用Fuzzywuzzy来匹配两个数据源之间的记录。

有几种方法可以比较Fuzzywuzzy中的两个字符串,让我们一个一个地进行尝试。

ratio ,按顺序比较整个字符串的相似度

返回结果时62,它告诉我们“Deluxe Room, 1 King Bed”和“Deluxe King Room”的相似度约62%。

“Traditional Double Room, 2 Double Beds”和“Double Room with Two Double Beds”的相似度约69%。“Room, 2 Double Beds (19th to 25th Floors)”和“Two Double Beds — Location Room (19th to 25th Floors)”相似度约74%。显然效果不怎么样。事实证明,简单的方法对于词序,缺失或多余词语以及其他类似问题的微小差异太过敏感。

partial_ratio,比较部分字符串的相似度

我们仍在使用相同的数据对:

返回依次69、83、63。对于我的数据集来说,比较部分字符串并不能带来更好的整体效果。让我们尝试下一个。

token_sort_ratio,忽略单词顺序

返回依次84、78、83。这是迄今为止最好的。

token_set_ratio,去重子集匹配

它与token_sort_ratio类似,但更加灵活。

返回依次100、78、97。看来token_set_ratio最适合我的数据。根据这一发现,将token_set_ratio应用到整个数据集。

当设定相似度> 70时,超过90%的房间对超过这个匹配分数。还很不错!上面只是做了2个文本间的相似度比较,如果存在多个如何处理?可以使用库中提供的 Process类:

用来返回模糊匹配的字符串和相似度。

你可以传入附加参数到 extractOne 方法来设置使用特定的匹配模式。一个典型的用法是来匹配文件路径:

FuzzyWuzzy在中文场景下的使用

FuzzyWuzzy支持对中文进行比较:

仔细查看代码,还是存在的问题:

  • FuzzWuzzy并不会针对中文进行分词
  • 也没有对中文的一些停用词进行过滤

改进方案,处理前进行中文处理:

  • 繁简转换
  • 中文分词
  • 去除停用词

参考链接:

打赏作者
微信支付标点符 wechat qrcode
支付宝标点符 alipay qrcode

黑客马拉松 (Hackathon):POI去重记录

10月24日参加了公司举办的黑客马拉松,我们选的题目是POI的去重。给到的数据格式如下: 目标是去重重复数据。
标点符
2 min read

scikit-learn中的文本特征提取

文本分析是机器学习算法的主要应用领域。由于大部分机器学习算法只能接收固定长度的数值型矩阵特征,导致文本字符串等
标点符
2 min read

斯坦福大学自然语言处理包StanfordNLP

最近在推荐点评的影响抽取,中间涉及到分词后的词性识别,看了各种开源分词工具,主要是词性标注集存在差异,最终选定
标点符
3 min read

发表评论

电子邮件地址不会被公开。 必填项已用*标注