Python中异常重试解决方案

26 sec read

在做数据抓取的时候,经常遇到由于网络问题导致的程序保存,先前只是记录了错误内容,并对错误内容进行后期处理。

原先的流程:

改进后的流程:

最近发现的新的解决方案:retrying

retrying是一个 Python的重试包,可以用来自动重试一些可能运行失败的程序段。retrying提供一个装饰器函数retry,被装饰的函数就会在运行失败的条件下重新执行,默认只要一直报错就会不断重试。

如果我们运行have_a_try函数,那么直到random.randint返回5,它才会执行结束,否则会一直重新执行。
retry还可以接受一些参数,这个从源码中Retrying类的初始化函数可以看到可选的参数:

  • stop_max_attempt_number:用来设定最大的尝试次数,超过该次数就停止重试
  •  stop_max_delay:比如设置成10000,那么从被装饰的函数开始执行的时间点开始,到函数成功运行结束或者失败报错中止的时间点,只要这段时间超过10秒,函数就不会再执行了
  • wait_fixed:设置在两次retrying之间的停留时间
  • wait_random_min和wait_random_max:用随机的方式产生两次retrying之间的停留时间
  • wait_exponential_multiplier和wait_exponential_max:以指数的形式产生两次retrying之间的停留时间,产生的值为2^previous_attempt_number * wait_exponential_multiplier,previous_attempt_number是前面已经retry的次数,如果产生的这个值超过了wait_exponential_max的大小,那么之后两个retrying之间的停留值都为wait_exponential_max。这个设计迎合了exponential backoff算法,可以减轻阻塞的情况。
  • 我们可以指定要在出现哪些异常的时候再去retry,这个要用retry_on_exception传入一个函数对象:

在执行read_a_file函数的过程中,如果报出异常,那么这个异常会以形参exception传入retry_if_io_error函数中,如果exception是IOError那么就进行retry,如果不是就停止运行并抛出异常。

我们还可以指定要在得到哪些结果的时候去retry,这个要用retry_on_result传入一个函数对象:

在执行get_result成功后,会将函数的返回值通过形参result的形式传入retry_if_result_none函数中,如果返回值是None那么就进行retry,否则就结束并返回函数值。

其他相关资料:

打赏作者
微信支付标点符 wechat qrcode
支付宝标点符 alipay qrcode

AttributeError: ‘NoneTyp…

在PyCharm创建的Virtualenv环境下,使用pip安装包时,老是提示需要升级pip,具体提示信息为:
12 sec read

Anaconda包更新遇到的问题及解决方案

Anaconda可以通过命令升级所有的Python包,具体命令为:conda update –al
7 sec read

复合事件处理CEP简介

什么是复合事件处理? 这是一个IT事件爆发的时代,各种IT系统之间或系统内部,每天产生大量事件。系统在关键点打
23 sec read

One Reply to “Python中异常重试解决方案”

发表评论

电子邮件地址不会被公开。 必填项已用*标注