Python中异常重试解决方案

26 sec read

在做数据抓取的时候,经常遇到由于网络问题导致的程序保存,先前只是记录了错误内容,并对错误内容进行后期处理。

原先的流程:

改进后的流程:

最近发现的新的解决方案:retrying

retrying是一个 Python的重试包,可以用来自动重试一些可能运行失败的程序段。retrying提供一个装饰器函数retry,被装饰的函数就会在运行失败的条件下重新执行,默认只要一直报错就会不断重试。

如果我们运行have_a_try函数,那么直到random.randint返回5,它才会执行结束,否则会一直重新执行。
retry还可以接受一些参数,这个从源码中Retrying类的初始化函数可以看到可选的参数:

  • stop_max_attempt_number:用来设定最大的尝试次数,超过该次数就停止重试
  •  stop_max_delay:比如设置成10000,那么从被装饰的函数开始执行的时间点开始,到函数成功运行结束或者失败报错中止的时间点,只要这段时间超过10秒,函数就不会再执行了
  • wait_fixed:设置在两次retrying之间的停留时间
  • wait_random_min和wait_random_max:用随机的方式产生两次retrying之间的停留时间
  • wait_exponential_multiplier和wait_exponential_max:以指数的形式产生两次retrying之间的停留时间,产生的值为2^previous_attempt_number * wait_exponential_multiplier,previous_attempt_number是前面已经retry的次数,如果产生的这个值超过了wait_exponential_max的大小,那么之后两个retrying之间的停留值都为wait_exponential_max。这个设计迎合了exponential backoff算法,可以减轻阻塞的情况。
  • 我们可以指定要在出现哪些异常的时候再去retry,这个要用retry_on_exception传入一个函数对象:

在执行read_a_file函数的过程中,如果报出异常,那么这个异常会以形参exception传入retry_if_io_error函数中,如果exception是IOError那么就进行retry,如果不是就停止运行并抛出异常。

我们还可以指定要在得到哪些结果的时候去retry,这个要用retry_on_result传入一个函数对象:

在执行get_result成功后,会将函数的返回值通过形参result的形式传入retry_if_result_none函数中,如果返回值是None那么就进行retry,否则就结束并返回函数值。

其他相关资料:

打赏作者
微信支付标点符 wechat qrcode
支付宝标点符 alipay qrcode

用户模型之三户模型

10 sec read

常用算法之分治法

分治法概念 分治法(divide-and-conquer)字面上的解释是“分而治之”,就是把一个复杂的问题分成两个或更多的相同或相似的子问题,直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。分治有两个特点: 子问题相互独立且与原问题形式 ...
1 min read

使用Python更换外网IP

在进行数据抓取时,经常会遇到IP被限制的情况,常见的解决方案是搭建代理IP池,或购买IP代理的服务。除此之外,还有一个另外的方法就是使用家里的宽带网络进行抓取。由于家里的宽带每次断开重新连接时都会分配一个新的IP,所以在我们抓取数据的时候,判断 ...
36 sec read

One Reply to “Python中异常重试解决方案”

Leave a Reply

Your email address will not be published. Required fields are marked *