常见相似度计算方法回顾

6 sec read

最近学习了常见的一些相似度计算的方法,在寻找资料的过程中找到了一篇较好的博客。主要是图做的比较好。所以拿过来做下简单的回顾与复习。

欧几里得距离

欧几里得距离其实就是空间内两点之间的直线距离。

Python实现:

曼哈顿距离

曼哈顿距离其实就是每一轴距离之和。

Python实现:

闵氏距离

闵氏距离被看做是欧氏距离曼哈顿距离的一种推广。公式中包含了欧氏距离、曼哈顿距离和切比雪夫距离

Python实现:

余弦相似度

余弦相似度理解起来较为简单,就是向量在空间方向上的差异。

Python实现:

杰卡德相似度

杰卡德相似度理解起来非常的简单,就是集合的交集除以并集。

Python实现:

原文链接:http://dataaspirant.com/2015/04/11/five-most-popular-similarity-measures-implementation-in-python/

打赏作者
微信支付标点符 wechat qrcode
支付宝标点符 alipay qrcode

TensorFlow学习笔记:特征工程

特征工程是机器学习流程中重要的一个环节,即使是通常用来做端到端学习的深度学习模型在训练之前也免不了要做一些特征
5 min read

CTR预估模型FM、FFM、DeepFM

点击率(click-through rate, CTR) 是点击特定链接的用户与查看页面,电子邮件或广告的总用
6 min read

腾讯实时视频推荐系统学习笔记

前面学习了TencentRec: Real-time Stream Recommendation in Pra
1 min read

发表评论

电子邮件地址不会被公开。 必填项已用*标注