相似度计算之曼哈顿距离

曼哈顿距离是由十九世纪的赫尔曼·闵可夫斯基所创词汇 ,是种使用在几何度量空间的几何学用语,用以标明两个点在标准坐标系上的绝对轴距总和。

上图中红线代表曼哈顿距离,绿色代表欧氏距离,也就是直线距离,而蓝色和橙色代表等价的曼哈顿距离。通俗来讲,想象你在曼哈顿要从一个十字路口开车到另外一个十字路口实际驾驶距离就是这个“曼哈顿距离”,此即曼哈顿距离名称的来源,同时,曼哈顿距离也称为城市街区距离(City Block distance)。正正方方的曼哈顿的地图:

曼哈顿距离公式:

$$dist_{man}(x,y)=\sum_{i=1}^{n}{|x_i-y_i|}$$

曼哈顿距离的Python实现:

微信支付标点符 wechat qrcode
支付宝标点符 alipay qrcode

机器学习在旅游与酒店个性化的研究

当我们访问Netflix、 YouTube 或Amazon时,我们认为个性化推荐是理所当然的。这些服务已经探索

机器学习: 商业与数据科学之间的桥梁

每次我们谈论自动驾驶汽车、聊天机器人、 AlphaGo 或者预测分析,都会涉及到一些机器学习技术的实现。在公众

Python检验数据是否正态分布

判断数据是否符合正态分布,比如使用3-sigma判断数据异常前,首先需要确定的是数据是否符合正态分布。今天一起

发表评论

电子邮件地址不会被公开。 必填项已用*标注