相似度计算之兰氏距离

7 sec read

兰氏距离(Lance and Williams distance)堪培拉距离(Canberra Distance),被认为是曼哈顿距离的加权版本。

其定义公式为:

    \[d(\mathbf {p} ,\mathbf {q} )=\sum _{i=1}^{n}{\frac {|p_{i}-q_{i}|}{|p_{i}|+|q_{i}|}}\]

通常兰氏距离对于接近于0(大于等于0)的值的变化非常敏感。与马氏距离一样,兰氏距离对数据的量纲不敏感。不过兰氏距离假定变量之间相互独立,没有考虑变量之间的相关性。

Python实现:

参考资料:

打赏作者
微信支付标点符 wechat qrcode
支付宝标点符 alipay qrcode

K-Means算法之K值的选择

4 min read

聚类算法之K-Means及其变种

3 min read

信息熵与相对熵(KL距离)

信息熵 在信息论中,熵是接收的每条消息中包含的信息的平均量,又被称为信息熵、信源熵、平均自信息量。这里, 消息代表来自分布或数据流中的事件、样本或特征。在信息世界,熵越高,则能传输越多的信息,熵越低,则意味着传输的信息越少。 ...
25 sec read

Leave a Reply

Your email address will not be published. Required fields are marked *