相似度计算之兰氏距离

兰氏距离(Lance and Williams distance)堪培拉距离(Canberra Distance),被认为是曼哈顿距离的加权版本。

其定义公式为:

$$d(\mathbf {p} ,\mathbf {q} )=\sum _{i=1}^{n}{\frac {|p_{i}-q_{i}|}{|p_{i}|+|q_{i}|}}$$

通常兰氏距离对于接近于0(大于等于0)的值的变化非常敏感。与马氏距离一样,兰氏距离对数据的量纲不敏感。不过兰氏距离假定变量之间相互独立,没有考虑变量之间的相关性。

Python实现:

参考资料:

微信支付标点符 wechat qrcode
支付宝标点符 alipay qrcode

机器学习在旅游与酒店个性化的研究

当我们访问Netflix、 YouTube 或Amazon时,我们认为个性化推荐是理所当然的。这些服务已经探索

机器学习: 商业与数据科学之间的桥梁

每次我们谈论自动驾驶汽车、聊天机器人、 AlphaGo 或者预测分析,都会涉及到一些机器学习技术的实现。在公众

Python检验数据是否正态分布

判断数据是否符合正态分布,比如使用3-sigma判断数据异常前,首先需要确定的是数据是否符合正态分布。今天一起

发表评论

电子邮件地址不会被公开。 必填项已用*标注