相似度计算之兰氏距离

兰氏距离(Lance and Williams distance)堪培拉距离(Canberra Distance),被认为是曼哈顿距离的加权版本。

其定义公式为:

$$d(\mathbf {p} ,\mathbf {q} )=\sum _{i=1}^{n}{\frac {|p_{i}-q_{i}|}{|p_{i}|+|q_{i}|}}$$

通常兰氏距离对于接近于0(大于等于0)的值的变化非常敏感。与马氏距离一样,兰氏距离对数据的量纲不敏感。不过兰氏距离假定变量之间相互独立,没有考虑变量之间的相关性。

Python实现:

参考资料:

微信支付标点符 wechat qrcode
支付宝标点符 alipay qrcode

异常检测包PyCuliarity的使用

时间序列异常检测算法梳理的文章中介绍了Twitter的异常检测工具AnomalyDetection。另外也讲到

Netflix异常检测工具Surus初探

Surus简介 Surus是NetFlix开源的UDFs,是基于pig和hive的数据分析工具。Surus中的

Python异常检测包:PyOD

PyOD简介 异常检测(anomaly detection),也叫异常分析(outlier analysis或

发表评论

电子邮件地址不会被公开。 必填项已用*标注