相似度计算之兰氏距离

7 sec read

兰氏距离(Lance and Williams distance)堪培拉距离(Canberra Distance),被认为是曼哈顿距离的加权版本。

其定义公式为:

    \[d(\mathbf {p} ,\mathbf {q} )=\sum _{i=1}^{n}{\frac {|p_{i}-q_{i}|}{|p_{i}|+|q_{i}|}}\]

通常兰氏距离对于接近于0(大于等于0)的值的变化非常敏感。与马氏距离一样,兰氏距离对数据的量纲不敏感。不过兰氏距离假定变量之间相互独立,没有考虑变量之间的相关性。

Python实现:

参考资料:

打赏作者
微信支付标点符 wechat qrcode
支付宝标点符 alipay qrcode

使用Docker安装多用户版的JupyterHub

宿主服务器使用的是Ubuntu 18.04,需要注意的是Docker目前不支持Ubuntu 19.10。如要在
标点符
3 min read

如何选择scikit-learn中的算法

scikit-learn中自带了很多机器学习的算法,在日常使用过程中可能产生疑问,以下2张图获取可以帮助你解决
标点符
0 sec read

斯坦福大学的词向量工具:GloVe

GloVe简介 GloVe的全称叫Global Vectors for Word Representation
标点符
2 min read

发表评论

电子邮件地址不会被公开。 必填项已用*标注