相似度计算之Dice系数

18 sec read

Dice距离用于度量两个集合的相似性,因为可以把字符串理解为一种集合,因此Dice距离也会用于度量字符串的相似性。此外,Dice系数的一个非常著名的使用即实验性能评测的F1值。Dice系数定义如下:

    \[s = \frac{2|A\cap B|}{|A|+|B|}\]

其中分子是A与B的交集数量的两倍,分母为X和Y的长度之和,所以他的范围也在0到1之间。从公式看,Dice系数和Jaccard非常的类似。Jaccard是在分子和分母上都减去了|A∩B|。

    \[J(A,B)=\frac{|A\cap B|}{|A\cup B|}=\frac{|A\cap B|}{|A|+|B|-|A\cap B|}\]

与Jaccard不同的是,相应的差异函数

d=1-{\frac {2|X\cap Y|}{|X|+|Y|}}

不是一个合适的距离度量措施,因为它没有三角形不等性的性质。例如给定 {a}, {b}, 和 {a,b}, 前两个集合的距离为1, 而第三个集合和其他任意两个集合的距离为三分之一。

与Jaccard类似, 集合操作可以用两个向量A和B的操作来表示:

    \[s_{v}={\frac {2|A\cdot B|}{|A|^{2}+|B|^{2}}}\]

Python实现:

其他参考:

打赏作者
微信支付标点符 wechat qrcode
支付宝标点符 alipay qrcode

使用Prophet进行时间序列预测

Prophet是Facebook开源的预测工具,相比ARIMA模型,Prophet真的是非常的简单。只要读入两
1 min read

采用时间序列预测股价变化

时间序列简介 在数学上,随机过程被定义为一族时间随机变量,即{x(t),t∈T},其中T表示时间t的变动范围。
5 min read

SARIMAX:季节性ARIMA

在先前的使用Python创建季节性ARIMA模型中,出现了SARIMAX模型。在上一篇的文章中并没有讲清楚SA
18 sec read

发表评论

电子邮件地址不会被公开。 必填项已用*标注