相似度计算之Dice系数

18 sec read

Dice距离用于度量两个集合的相似性,因为可以把字符串理解为一种集合,因此Dice距离也会用于度量字符串的相似性。此外,Dice系数的一个非常著名的使用即实验性能评测的F1值。Dice系数定义如下:

    \[s = \frac{2|A\cap B|}{|A|+|B|}\]

其中分子是A与B的交集数量的两倍,分母为X和Y的长度之和,所以他的范围也在0到1之间。从公式看,Dice系数和Jaccard非常的类似。Jaccard是在分子和分母上都减去了|A∩B|。

    \[J(A,B)=\frac{|A\cap B|}{|A\cup B|}=\frac{|A\cap B|}{|A|+|B|-|A\cap B|}\]

与Jaccard不同的是,相应的差异函数

d=1-{\frac {2|X\cap Y|}{|X|+|Y|}}

不是一个合适的距离度量措施,因为它没有三角形不等性的性质。例如给定 {a}, {b}, 和 {a,b}, 前两个集合的距离为1, 而第三个集合和其他任意两个集合的距离为三分之一。

与Jaccard类似, 集合操作可以用两个向量A和B的操作来表示:

    \[s_{v}={\frac {2|A\cdot B|}{|A|^{2}+|B|^{2}}}\]

Python实现:

其他参考:

打赏作者
微信支付标点符 wechat qrcode
支付宝标点符 alipay qrcode

TensorFlow学习笔记:特征工程

特征工程是机器学习流程中重要的一个环节,即使是通常用来做端到端学习的深度学习模型在训练之前也免不了要做一些特征
5 min read

CTR预估模型FM、FFM、DeepFM

点击率(click-through rate, CTR) 是点击特定链接的用户与查看页面,电子邮件或广告的总用
6 min read

腾讯实时视频推荐系统学习笔记

前面学习了TencentRec: Real-time Stream Recommendation in Pra
1 min read

One Reply to “相似度计算之Dice系数”

  1. 你的代码有错误,怕是你对这个公式不理解

发表评论

电子邮件地址不会被公开。 必填项已用*标注